Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 835: 155490, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35476950

RESUMO

The spatio-temporal assessment of water and carbon fluxes in Brazil's Northeast region (NEB) allows for a better understanding of these surface flux patterns in areas with different vegetation physiognomies. The NEB is divided into four biomes: Amazon, Cerrado, Caatinga, and Atlantic Forest. Land degradation is a growing problem, particularly in susceptible areas of the Caatinga biome, such as the seasonally dry tropical forest. Furthermore, this region has experienced climatic impacts, such as severe droughts. Due to increasing human pressure, the Caatinga's natural land cover undergoes drastic changes, making it a region particularly vulnerable to desertification. In this study, the Moderate Resolution Imaging Spectroradiometer (MODIS) estimates of evapotranspiration (ET) and gross primary production (GPP) were validated in two contrasting areas, dense Caatinga and sparse Caatinga, using eddy covariance (EC) data and then investigated their behavior over 21 years (2000-2021) for the NEB. MODIS products explained around 60% of the variations in ET and GPP, showing higher accuracy in dense Caatinga, while areas of sparse Caatinga presented the lowest GPP, indicating that land degradation has reduced the photosynthetic activity of the vegetation in this area. Based on the analysis of ET and GPP over 21 years, we observed a greater dependence of the sparse Caatinga on climate variability, demonstrating a stronger resilience of dense Caatinga to climate effects. In comparison with the other biomes of the NEB region, we found lower rates of ET and GPP in the Caatinga biome, with averages similar to the Sparse Caatinga. In comparison with the other biomes in the NEB region, we found the lowest averages of ET and GPP in the Caatinga biome, similar to values found in the sparse Caatinga. In forest areas, similar to the monitored DC, they allowed the Caatinga to behave closer to the other biomes present in the region.


Assuntos
Secas , Ecossistema , Brasil , Florestas , Humanos , Tecnologia de Sensoriamento Remoto
2.
Environ Monit Assess ; 192(8): 524, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32676932

RESUMO

Arid and semi-arid environments correspond to one-third of the Earth's terrestrial surface. In these environments, precipitation is an essential and limiting element for vegetation growth and ecosystem biomass productivity. The semi-arid region of Brazil comprises around 11.5% of the national territory, where the Caatinga biome originally composed ~ 76% of this area, with water deficit as a prominent feature, annual rainfall lower than 800 mm, temperatures ranging between 25 and 30 °C, and potential evapotranspiration higher than 2000 mm/year. Research on the dynamics of mass and heat fluxes through techniques such as eddy covariance (EC) has contributed to estimate the magnitude and seasonal patterns of turbulent exchanges between ecosystems and the atmosphere. This study was conducted in an area of dense Caatinga (DC) and another of sparse Caatinga (SC) from 2013 to 2014. It was observed that albedo (α) and net radiation (Rn) were higher in the SC compared with DC since the magnitude of incoming shortwave radiation was higher in this area. It was found that most of the Rn is converted to sensible heat flux (H), mainly during the dry period in the SC, about 50% for H and 20% for λE. The energy balance closure showed that the turbulent fluxes (H + λE) were underestimated in comparison to the available energy at the surface (Rn - G). We also observed that this discrepancy was higher in the DC area, corresponding to ~ 30%.


Assuntos
Ecossistema , Monitoramento Ambiental , Brasil , Florestas , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...